The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre.

نویسندگان

  • B T Porse
  • I Leviev
  • A S Mankin
  • R A Garrett
چکیده

A newly identified class of highly thiostrepton-resistant mutants of the archaeon Halobacterium halobium carry a missense mutation at codon 18 within the gene encoding ribosomal protein L11. In the mutant proteins, a proline, conserved in archaea and bacteria, is converted to either serine or threonine. The mutations do not impair either the assembly of the mutant L11 into 70 S ribosomes in vivo or the binding of thiostrepton to ribosomes in vitro. Moreover, the corresponding mutations at proline 22, in a fusion protein of L11 from Escherichia coli with glutathione-S-transferase, did not reduce the binding affinities of the mutated L11 fusion proteins for rRNA of of thiostrepton for the mutant L11-rRNA complexes at rRNA concentrations lower than those prevailing in vivo. Probing the structure of the fusion protein of wild-type L11, from E. coli, using a recently developed protein footprinting technique, demonstrated that a general tightening of the C-terminal domain occurred on rRNA binding, while thiostrepton produced a footprint centred on tyrosine 62 at the junction of the N and C-terminal domains of protein L11 complexed to rRNA. The intensity of this protein footprint was strongly reduced for the mutant L11-rRNA complexes. These results indicate that although, as shown earlier, thiostrepton binds primarily to 23 S rRNA, the drug probably inhibits peptide elongation by impeding a conformational change within protein L11 that is important for the function of the ribosomal GTPase centre. This putative inhibitory mechanism of thiostrepton is critically dependent on proline 18/22. Moreover, the absence of this proline from eukaryotic protein L11 sequences would account for the high thiostrepton resistance of eukaryotic ribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy

Ribosomal proteins are assumed to stabilize specific RNA structures and promote compact folding of the large rRNA. The conformational dynamics of the protein between the bound and unbound state play an important role in the binding process. We have studied those dynamical changes in detail for the highly conserved complex between the ribosomal protein L11 and the GTPase region of 23S rRNA. The ...

متن کامل

Interactions of the N-terminal domain of ribosomal protein L11 with thiostrepton and rRNA.

Ribosomal protein L11 has two domains: the C-terminal domain (L11-C76) binds rRNA, whereas the N-terminal domain (L11-NTD) may variously interact with elongation factor G, the antibiotic thiostrepton, and rRNA. To begin to quantitate these interactions, L11 from Bacillus stearothermophilus has been overexpressed and its properties compared with those of L11-C76 alone in a fluorescence assay for...

متن کامل

The RNA-binding domain of ribosomal protein L11 recognizes an rRNA tertiary structure stabilized by both thiostrepton and magnesium ion.

Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the 'GTPase center' of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximit...

متن کامل

On the role of rRNA tertiary structure in recognition of ribosomal protein L11 and thiostrepton.

Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequenc...

متن کامل

Thiostrepton-resistant mutants of Thermus thermophilus.

Ribosomal protein L11 and its associated binding site on 23S rRNA together comprise one of the principle components that mediate interactions of translation factors with the ribosome. This site is also the target of the antibiotic thiostrepton, which has been proposed to act by preventing important structural transitions that occur in this region of the ribosome during protein synthesis. Here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 276 2  شماره 

صفحات  -

تاریخ انتشار 1998